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METHOD OF DERIVATION OF THE KORTEWEG — de VRIES — BURGERS EQUATION

PMM Vol, 39, N4, 1975, pp,686-694
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(Moscow)
(Received January 31, 1975)

A method of derivation of the Korteweg — de Vries — Burgers (KdVB) equation for
media with dispersion and dissociation, whose behavior is defined by equations
of a fairly general form, is presented, The method is used for obtaining KdVB
equations for collision plasma with Hall dispersion and the Korteweg — de Vries
(KdV) equation for waves propagating in hot collisionfree plasma across a mag-
netic field,

Congiderable attention was recently devoted to the investigation of the Korte-
weg — de Vries equation which provides a good definition of weakly nonlinear
waves in the presence of dispersion in various media waves on shallow water,
ionization sound in plasma, etc, ). Since this equation is at present well known,
its derivation is important for the investigation of wave motion in any medium,
It was stated [1] on the basis of investigation of a number of examples that the
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KdV equation is valid for wave motions in a certain medium only when solu-
tions in the form of simple waves exist, when dispersion is disregarded, and the
law of dispersion for small wave numbers is of the form w = ¢k — Bi3, where
o is the frequency, % is the wave number, ¢, is the propagation velocity of
oscillations in the absence of dispersion, and § is a dispersion parameter, Here
proof is given of that statement for some limiting assumptions, and a general
method of derivation of the Korteweg — de Vries — Burgers equation for such me-
dia, The KdV equation can be obtained from the latter by neglecting dispersion,
and the Burgers equation by setting p = 0.

Note that a method similar to that presented here was used by A,G, Kulikov-
skii for the derivation of the Burgers equation,

1, Derivation of the KdVB equation in the case of existence
of a complete system of eigenvectors, Let the state of some system be
determined by the vector variable u, which we represent in the form u = u, -+ w’,
where u, defines the stationary homogeneous state of the medium, The prime will be
henceforth omitted, Let the behavior of the medium be defined by the system of equa-

tions of the form a
du du du d'u
37+Aa“40%+m3;v~gy) (.1)
where u and f are vectors with components u,, ..., uyand f;, ..., f,,respect-

ively,and 4 is a matrix, We impose on f{ the following conditions:
1)ifu=0,then f =0 ;
2) function f can be expanded into a Taylor series at least up to quadratic terms;
3) the term « du/dz, where q is a constant matrix, is absent in the expansion of
f into the Taylor series,
We call A the matrix of the system, In what follows we assume that all eigenvalues

of matrix A are real and A, is a single root, We impose the condition (A; — A;) /
M ~1, when A; 5= Aj. We shall consider only the case in which matrix 4 has
n linearly-independent eigenvectors C,, ..., C,. The system of equations

du du

ot T A5z =0 (1.2)

has then n linearly-independent solutions of the form @ (¢) exp (ikx), which can be

it . .
written as w; = Cjexp ik (z —At)l, i=12..,n

This solution determines waves which propagate at speeds A, . . ., An.

Below we consider the first of these waves on the assumption that in the presence of
dispersion and dissociation expressions for the frequency and attenuation increment of

f the f
any wave are of the form ©; = Mk — Bk® i = vikd (1.8)

(Bl | Bulsviz 0, vi<V)

Henceforth we shall denote A, by c,, and B, and v, by B and v,respectively,
We introduce new variables defined by formula

v =C"1ly (1.4)
where vector C; (i = 1, ..., n) isthe i-th column of mamix C . In these variables
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system (1,1) assumes the form
av av av v
W’%"Ba g(VOLV)axQ"‘v'a—x{;)
B = CAC = diag (Ayy .+ .y Ay)
q g
g<v0+v, g;'i—;') ac~lf(0(vo+v),c%,..,. ,c"i-‘-’)

x 827,

Let us introduce three small parameters: ¢ the-ratio of perturbation amplitudes to
related unperturbed parameters, the dispersion parameter § == (P / ¢,)"*L~!, where L
is a characteristic length of the problem, and the attenuation parameter 4 = v (coL)~%.
Subsequently we retain terms of the order of e, &%, €0, £§? and en.

The subsequent analysis is entirely devoted to the Cauchy problem in an infinite space,
We impose certain limitationsonthe initial conditions which imply that the considered
wave propagates at velocity close to Ay == c,. Specifically we assume that v, ~ ¢,
v =0 +ebten, i=2 ...,nfxt=0

In particular it is possible toset v; = 0, i =2, ..., n for t = Q.

The equation for vy is written in the form

6 d
>+ 0’;1 = £ (1. 5)

Noting that g == O for v = O we have

o'y 3
2 2“153 'JF 2 2 Blulsa v +0(82) (1-6)

e} ju= i, j=1 1, g==0
We introduce the dispersion and dissipation lengths defined, respectively, by formulas

L=B/c)" Ly =v/c

From considerations of dimensionality we obtain

i—1
io = o (@ult’ +buls"), owij=co 2 BT, (>0
=0
Biisoo = Co (@yiili? + bysl3Y)
Ids—1
P gt
Busits = ¢o 2 LT, 1+ >0
r=0

whete ay;, by i, @y byy; and B, are dimensionless quantities, The passing
tolimits /; — 0 and [, — 0 corresponds to the absence of dispersion and dissipation,
Since for the considered system such passage is permissible @;; = by = @35 =

by:; = 0 and, in virtue of assumption (3), a;;; = 0.

It is seen that the terms B}, 1,711 (9%y; / 0x') (6%; / 82°) are of the order
M"Yy, (Gv; / 0z), and, since for i >1 wehave v; = 0 (&) hence it is possible
to neglect in (1, 6) all quadratic terms, except (Byyy01 - Pryyyo) 21 Ovy/ dz. The order
of the term of the form 1,7l " layilé?v;/047 is 8™ =r-1 dv;/dx, therefore it is pos-
sible to neglect in (1, 6) all linear terms, except
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L P01 0%, =2

%112 Hzt * G913 528 * Oyig Bt ? re b

Thus, in the considered appmximation we obtain for gy the formula

31 dvy

Z Ez axg +§ a3 + V5o 9z (1.7)
(25 ]
The equation for v;, where j = 2, ..., n, is of the form
v, Ao,
— O 1.8
s Thigg =8 .9

Since in (1.7) the term §;0%; / 02* is of order ¢,6dv; / dz, it is necessary to re-
tain in the expansion of g; into a Taylor series (1, 7) only the term of order ¢,88v, / dz,
and neglect terms of higher order, In this manner (1, 7) reduces to the equation

oy, 8 ey ag’.
2 . - i
Bt Ay 6:8 =8 5 gz2 ? 0; = 8 (8%1/072) [p=p (1.9
We introduce the Fourier transform by formulas
O o
Vig = S vierhdz, vje = S veitdt, Imo>0
— e

This reduces Eq, (1, 9) to the form
L (kA — 0) Vjgo = — 0130 — V;n V;k = Ujk |1=o
Applying the Fourier wansform to Eq, (1, 5), we obtain
i (key — @Wike = — v33° -+ O (8e + ne 4 &%)

The term §k%p,;, is of order §e, consequently in the considered approximation
we obtain 0,505, i
Vike = (e — @) (bh; — @) + 7 — o
Using the inverse transformation, we obtain
95 avs®

dvr°

Vi T TR, e & Gl +c°_.fx = (& —Mt) v (@ —At) (1.10)
where v;° = vj|;—y. We assume that
o __ e»j an
ViT T =%, o (1.11)

Hence in the considered approximation formula

61;' a.
=L e __“’_, =0 (1.12)
is valid,
It follows from (1, 9) and (1, 12) that
i % om (1.13)

oz Aj—co G2

which reduces Eq, (1, 5) to the form
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on 61;1 ovy 0% j s
t+0 13z+§1 3x2+(§+2ﬁ)‘a—;%' (1.14)
122
Formulas (1, 3) imply that relationships
g =v (€+Z ,_CO)~ —B (1.15)
j=2 A
must be necessarily satisfied,
Setting % =% (0 and using the substitution w == —xv;, we obtain for w the KdVB
equation 2w (1.16)
at +(c°+w) 81+B813: ox? )

It should be noted that condition (1,11) is unimportant,

In fact, if condition (1, 11) is not satisfied, then in addition to the wave propagating
at a velocity close to ¢, with amplitude of order ¢ waves running at velocities %,
with j > 1 and amplitudes of order 6z make their appearance, Because of this, addi-
tional terms of order §2¢ which define the effect of these waves on the basic wave ap-
pear in the right-hand part of (1, 14), However, the time of interaction between waves
propagating at velocities i; with the basic wave, is of the arder ¢, = L/ (¢ — A;) ~ L/
¢ for ¢y — Aj ~ ¢y, and L is the characteristic width of the initial perturbation, The
time during which these terms can materially affect v, may be estimated as 7' = §-2 1/
cp. Owing to this it is possible to neglect the terms related to the appearance of waves
running at velocities A;, and Eq, (1,14) remains unchanged, All this is, however, valid
only in problems with localized initial perturbation, In problems with periodic initial
conditions, condition (1,11) is essential,

2, Derivation of KdVB equations in the case of absence of ei-
genvectors, Letus consider the case when the number of linearly independent eigen-
vectors of matrix A is smaller than n. For any matix A there exists a mawix C such
that B = C-AC is a Jordan matrix, Let B have M <C h cells, We denote the di-
mension of the p cell by V,. Owing to the imposed above condition of singleness of
Ay ,we have N; = 1. Moreover, jg ,,= . . . = kg, = Ap*, where Sp = N, -+

.+ Np; and S; = (. Columns ot matrix C are denoted by C; as in Sect, 1,
Note that now not all (; are eigenvectors of matrix A.

The complete system of linearly -independent solutions of Eq, (2,2) of the form

¢ (f) exp (tkx) now becomes

— ikt j-r
us = 2 ( (113)' Csor €xp [ik (z — hp*t)]

1<1</\rp, p=1...,M

It will be seen that the oscillation modes to which correspond Jordan cells greater
than unity are unstable owing to the appearance of secular terms, Because of this, all
subsequent reasoning is valid only for fairly short time intervals during which instability
had not yet developed. Note that the allowance for attenuation and dispersion in the
analysis of the above mode may result in the disappearance of terms proportional to
powers of ¢ and, thus, eliminate the mode instability,
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Proceeding as in Sect, 1 we find that the only difference is in that for the determina-
tion of v; for j >> 1 we have to consider the system of equations

v v v
S,t1 S,+1 8,+2
P * P -
ot Mt 0w Espn

......................

; v v
Sp+1\p-1 4+ A* Sp+Np—1 Sp+Np — g5 N
ot oz oz N pL
g N 2 5,41

En + Ap gx P = gspmp
instead of Eq, (1. 8),
We conclude, as in Sect, 1, that in the considered approximation it is possible to as-
sume that gs .; = Bsp+ j0%v,/0x%. Application of the Fourier transformation yields

Np—i
e o — kv, 2 O . ( k l
Sptike = (ko — m) (k)»p* —a) = Sptitl o — xp'_k> —
Np—i
—r i P (R R (TR
® —klp' pt vSp+]+lk ((D-—Z,p"'k) y 1= bl

with the specified accuracy,
Applying the inverse transformation, we obtain

N,—ij
L4 93 +j+1 °
= L optitt 0wy 2.1
Vst T T 2 (co— A xHt 02 (@ —ct) + .1
N

p I+,
S +i+l 9
3 [ e S — bt +

1=0
!
dvg L #
P —_
—d (z — Ap*t) 7

It will be readily seen that in the general case it is not possible to impose on initial
conditions constraints which would reduce to zero the expression in brackets in the last
equation (this could have been done, if the expression (—1)! 05,471 were independent
of Iwhen [ =0, ..., Ny —jij=1,..., Npy p= 1, ..., M). However
in a problem with localized perturbation propagation and fairly short times ¢Z, i, e, such
for which the amplitudes of unstable modes remain small, it is possible to neglect the
second sum in (2,1), Then, as in Sect, 1, Uspt+i satisfies Eq, (1,12), and the reasoning
in Sect,1 remains completely valid, except that instead of (1, 15) we obtain

M NpNp—j
. Sp+7+l _
: 1§1 §1 lz—‘lo (co — A "‘)l+1 =—F

The system of equations of the form (1,1) with mamix A with multiple roots arises,
for example, in the investigation of nonlinear waves propagating at an angle to the mag-
netic field in a cold plasma (see [1]), This is precisely the case in the considered prob-
lem, where zero is a double root,
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3, The KdV equation for waves propagating across a magnetic
field in a hot collisionless plasma, In the one-dimensional case the beha-
vior of weakly-nonlinear waves in a magnetized collisionless plasma moving across a
magnetic field whose directions remain constant, with the characteristic length of per-
turbations considerably greater than the Larmor radius, and the kinetic pressure of plasma
greater than, or of the order of magnetic pressure, is defined by the following equations
[2]

au |yt 14 , 8% Bo , Py

—— el e IIT r— —_ ) 2,,_,_— — = ey

a } 0 v dr + QR o2 ! Q emy R VPNYE (3.1)
v av LU ap U U g o

Sr= UG QRS rteg =g Uy

em® == (2P0 -+ Bo? [ 41) [ pg

where ¢, is the propagation velocity of small perturbation in the absence of dispersion ;
Q and R are, respectively, the Larmor frequency and ion radius; m; is the mass of the
fon; Qo, Pre and H, are parameters of the unperturbed plasma, It will be seen that
system (3, 1) is of the form (1,1), The matrix of the system has three different eigenva-
lues: c¢,, —¢m and U. Matrix C can be taken in the form

Cm €m0

C=10 0 ¢,

Po —po O
For &; we obtain (notation as in Sect, 1)
.3 ovr |, QR2 g
e T )
In the considered approximation dvg / 0t = — QR?*0%v, / dx®. From this, using for-
mulas (1, 15), we obtain § = — Q2R%/ 2¢,. In this way we obtain for v, the follow-
ing equation: 3 s QRS 5°
o1 vy wtmom
St Hem (1 T ”1) T 2, 0 0 (3.2)

since U = ¢, (v; -+ 1y), where v, is a quantity of higher order than v, , and in
accordance with (1, 12) in the considered approximation

602 /ot -+ Cmal’g {ox —= 0
from (3,2) we obtain a similar equation for U.

4, The K4dVB equation for waves in plasma with Hall dispersion
and Joule dissipation, The system of equations which defines plasma with the
Hall dispersion appears in [3], It is shown in [4] that in spite of the presence of Joule
dissipation the equation of entropy variation can in the considered approximation, be
replaced by the condition p = p¥-const. To allow for the Joule dissipation it is, thus,
necessary to alter in the system of equations only the equation of induction, as is made
in [4] (see Eq, (1)), Consequently the system of equations defining plasma with Hall
dispersion and Joule dissipation, after linearization of dispersion and dissipation terms
and rejection of terms of order higher than ¢? is of the form
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. au dp
ot T =—p5 —Ug (4.1)
au (1‘)2 3p 4 Bosina Bosina 90, au b, 0b,
at po Bz ' Tdmge 0% ox 4mpy Oz
Bysina 9b, _a_(f_ p _at(y—1) ap b, b,
471po oz dx po? p 9z 4npo oz
@V _ Bocosa®b, g _ Bocosa ob,,
at 4rtpe aa: - o 4 pe? p Bz
W _ Bocosadb, _UQ_PY_mBocosoc ab,
ot 4npy Az dx 4mpe? P a
8b,, av b, sy meB 3%, 3%,
T — Byoosa G = — U5t —b, T+ Zocosalt vk
ab
—a\f + Bgsina%g — Bycos o % =
b, aUr em; Bo 826 8%, ¥
— U2 b, = = 2 . 1Po
v Az b, o 4tepo cosa oox 5 Vg 3z BT = o

where g is the unperturbed density; o is the perturbation density; U, V and W are
the z-, Y- and Z-components of the velocity vector; p,is the unperurbed pressure;
B, is the induction of the unperturbed magnetic field (owing to the solenoidal proper-
ties of the magnetic field and induction, b, == 0); a is the angle between the vector
of unperturbed magnetic field and the x-axis (in a system of coordinates in which that
vector lies in xz-plane); and o is the permeance, We agsume that tga ~ 1.

It will be readily seen that system (4, 1) is of the form (1, 1), The system matrix has
six different eigenvalues

Moo ga=ta, =41, (Va? + Vi I 20,V acos o+
V a® -+ Vit — 2a,V 4 cos )
bgig = +Vacosa, Vig= B%/&ﬂpo

Matrix (¢ may be taken in the form

a, —a, a —a_ 0 0
0 0 0 0 Vaicosa —Vacosa
—D, D, —D_ D, 0 0
C= Po Po Po Po 0 0
0 0 0 0 B, B,
Q, 0@, 0. 0Q. 0 0
az:t — ap® 2 — gg?

Dy = ctiga, Qi = VA“"Sant 0

4y

The KdVB equation can be derived for a fast magneto-sonic wave (¢, = a,), aswell
as for a stow one (¢, = a_). In the first case we assume that at the initial instant X
vy~ &, v; = o (e)i =2, 3, 4, 5, 6), and in the second vy ~ €, U; = 0 (&)(i =
1, 2, 4, 5, 6) (all notation as in Sect, 1),
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For g,,; we obtain the following formula:

an Vaysina g . 3
g3 = — A4y 5~ — @ o) (vs +ve) + Vi 55

where the plus and minus subscripts at A and v,,* relate to the fast and slow wave,
respectively, and

o — a2 . ae? — a2 2 ga2)2
AL =a, 1_*_‘ Ty Z_l_ a0 ax | (2l — ao?)
—a % 2 2a0° (@, — 0.2 V 42 sin%a
. v, |a? —ag“?f cm. By cos
3 z._@.._j:___.._. et ———2-—---——
mE= g r gz X brepo

where the upper and lower subscripts relate to the fast and slow wave, respectively,
Using formula (1,15) and noting that

dvs dvs x | ai — a?| %,
Bt + Vacos % = T V2sina 8302
dvs Bvs ¥ ia‘ft — ag?] 9%

Bt V“OS“T”‘TV Tsina 922

where p = 1 for the fast wave,and p = 3 for the slow one, we obtain
d 6 8 « O
%

By = — x“aila:h——-ao”l
* 2(a2 —a2) (ah — V sPcost )
Using again (1,15) and noting that b, is a linear combination of v;, for b, we finally
obtain ob, ab V 2sina b ab 9%,
z A oz ‘
Gt T oxgy o By ox ; + 8i G = Vmt apr (4.2)

It should be noted that passing to new variables by formula (2, 5) can be useful in the
derivation of approximate equations for nonlinear waves also in the case, when the dis-

persion law differd from (2, 3),
In concluding the author thanks V, B, Baranov for the formulation of the problem and

valuable remarks,
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