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A method of derivation of the Korteweg - de Vries - Burgers (KdVB) equation for 
media with dispersion and dissociation, whose behavior is defined by equations 
of a fairly general form, is presented. The method is used for obtaining KdVB 
equations for collision plasma with Hall dispersion and the Korteweg - de Vries 
(KdV) equation for waves propagating in hot collisionfree plasma across a mag- 
netic field. 

Considerable attention was recently devoted to the investigation of the Korte- 
weg - de Vries equation which provides a good definition of weakly nonlinear 
waves in the presence of dispersion in various media waves on shallow water, 
ionization sound in plasma, etc.). Since this equation is at present well known, 
its derivation is important for the investigation of wave motion in any medium. 
It was stated [l] on the basis of investigation of a number of examples that the 
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1. Derivation of tha KdVB equation in thr ca:e of exirtance 
of a complete ryatcm of efgenvectors. Let the state of some system be 
determined by the vector variable u , which we represent in the form u = u0 + u’, 

where II,, defines the stationary homogeneous state of the medium. The prime will be 
henceforth omitted. Let the behavior of the medium be defined by the system of equa- 

KdV equation is valid for wave motions in a certain medium only when solu- 
tions in the form of simple waves exist, when dispersion is disregarded, and the 
law of dispersion for small wave numbers is of the form w = C& - pk3, where 

CII is the frequency, k is the wave number, c0 is the propagation velocity of 
oscillations in the absence of dispersion, and fJ is a dispersion parameter. Here 

proof is given of that statement for some limiting assumptions, and a general 

method of derivation of the Korteweg - de Vries - Burgers equation for such me- 
dia. The KdV equation can be obtained from the latter by neglecting dispersion. 

and the Burgers equation by setting fi = 0. 
Note that a method similar to that presented here was used by A.G.Kulikov- 

skii for the derivation of the Burgers equation. 

tions of the form 
$+Ag ( ==f uO+u, &..,$ 

) 
(1.1) 

where u and f are vectors with components ul, . . . , u, and fi, , . . , f,, , respect- 
ively, and d is a matrix. We impose on f the following conditions: 

1) ifu =O,then fz0 ; 
2) function f can be expanded into a Taylor series at least up to quadratic terms ; 
3) the term a au/&, where a is a constant matrix, is absent in the expansionof 

f into the Taylor series. 
We call A the matrix of the system. In what follows we assume that all eigenvalues 

of matrix A are real and h, is a single root. We impose the condition (hi - hi) / 

A1 - 1, when hi # kj. We shall consider only the case in which matrix A has 
n linearly-independent eigenvectors C,, . . . , C,. The system of equations 

$+A$=0 (1.2) 

has then n linearly-independent solutions of the form cp (t) exp (ikz), which can be 
written as 

Uj = Cj exp [ik (Z - hjt)l, i=i,Z n 9 ***I 

This solution determines waves which propagate at speeds h,, . . . , A,,. 
Below we consider the first of these waves on the assumption that in the presence of 

dispersion and dissodation expressions for the frequency and attenuation increment of 

any wave are of the form 
Oi = 3Lik - PIP, yi = VilcB .a 3) 

( 1 Pi I 6 I B1 I 3 yi > Of yf G %I 

Henceforth we shall denote A, by c,,, and p1 and vt by b and v, respectively. 

We introduce new variables defined by formula 

v = C-h (1.4) 

where vector C, (i = 1, . . . , n) is the i-th column of matrix C . In thesevariables 
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system (It 1) assumes the form 

B = C’1AC = diag(&, , . . , h,) 

g vo+v,$... ( 75) =c-lf(C(v*+v),C~ ,.... ,c~) 
Let us introduce three small parameters: E the.ratio of perturbation amplitudes to 

related unperturbed parameters, the dispersion parameter 6 =: (p I co)‘M-l, where L 
is a characteristic length of the problem, and the attenuation parameter ?j = Y (c&,)‘~. 
Subsequently we retain terms of the order of a, E’, 86, 86s and eq. 

The subsequent analysis is entirely devoted to the Cauchy problem in an infinitespace. 
We impose certain limitationson the initial conditions which imply that the considered 
wave ~o~gates at velocity close to ?kr 5 co. Specifically we assume that 2‘r - a, 

ai = 0 (a2 -+- ~6 -j- a@, i = 2, . . . , n for t = 0. 
In particular it is possible to set vi = 0, i = 2, . . . , n for t = 0. 
The equation for vr is written in the form 

(1.5) 

Noting that g zz 0 for v G 0, we have 

We introduce the dispersion and dissipation Iengths defined, respectively, by formulas 

11 = (fi ! C$‘Z, Is = v f cg 

From considerations of dimensionality we obtain 
j-l 

%a = c, (a,il;1 + b,l,'), a,*j = CO2 L~~~-r~~~~~, (j>O) 

l=O 

PlijOO = co @l& + 4um 

I-f-s-1 

P lijla = co z: 
1 rlt+s-T-y3$]la, lf s>o 12 

r=O 

(7) where ali, bli, olijt erij, b,ii and b$$ls are dimensionless quantities. The passing 
to limits lI + 0 and I, -+ 0 corresponds to the absence of dispersion and dissipation. 
Since for the considered system such passage&permissible ali = bri = ~,ij = 
b lij = 0 and, in virtue of assumption (3). alil = U. 

ft is seen that the terms f f+s-r-X (8’~~ / as’) (@svi / 8%‘) are of the order 
&p-l-1 

p$Zr l2 
ui (ihi f a~), and, since for i > 1 we have D$ = o (a) hence it is possible 

to neglect in (1.6) all quadratic terms, except (@lllO1 $ ~rlllo) z1 &J,/&L The order 
of the term of the form 1 *I j-‘-r (“’ 1 12 CQjd UiJdX’ iS 6r~‘-r-1 &~~f&, therefore it is pos- 
sible to neglect in (I. 6) all linear terms, except 
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Thus, in the considered ap~o~mation we obtain for & the formula 

The equation for Vj, where j = 2, . . . , n, is of the form 

Since in (1.7) the term ~j@v~ / &$ is of order c~~~v~ / dx, it is necessary to re- 
tain in the expansion of gj into a Taylor series (1.7) only the term of order c&Mz+ / &c, 
and neglect terms of higher order. In this manner (1.7) reduces to the equation 

We introduce the Fourier transform by formulas 
m m 

Vjk ZZ s f~jt+kxd~, &?jk@ = s ~j~e~#f~t, h @ > 0 
-Lt, -Eu 

This reduces Ey, (I. 9) to the form 

i (khj - 0) Uj&w = - 8jk2ulb - uik, vik z vjk 1t-o 

Applying the Fourier transform to Eq, (1.~4, we obtain 

i (kc, - ~~v~k~ = - UlkO i- 0 (6e $ rls + 6%) 

The term ~Jc%,~, is of order 68, consequently in the considered approximation 
we obtain Bjk%& 

. 0 

ujkw = - ‘“ik 

(kc0 - 0) p&j - 0) 
-i-- khi - 0 

Using the inverse transformation, we obtain 

where Pj” = 01 It=+. We assume that 

o- 
8. 

Uj -- 
1 atuo 

co - aj az (1.11) 

Hence in the considered ap~o~rnatfo~ formula 

avj du. 
Y!$ -j- c, -$- = 0 

is valid, 

Cl. 12) 

It follows from (1.9) and (I. 12) that 

avj_ % i3%, 

i?x -q------ --cu 3x2 

which reduces Eq. (1.5) to the form 

t1.131 
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Formulas (1.3) imply that relationships 

El = v (5 + j2~o) = - p (1.15) 

must be necessarily satisfied. 

Setting x # 0 and using the substitution w = -xvi, we obtain for u’ the KdVB 
equation 

It should be noted that condition (1.11) is unimportant. 
In fact, if condition (1.11) is not satisfied, then in addition to the wave propagating 

at a velocity close to co with amplitude of order F waves running at velocities hj, 
with i > 1 and amplitudes of order 6~ make their appearance. Because of this, addi- 

tional terms of order 6’E which define the effect of these waves on the basic wave ap- 

pear in the right-hand part of (1.14). However, the time of interaction between waves 

propagating at velocities hj with the basic wave, is of the order t, = L / (c,, - hj) - L i 

CO for co - hj - CO, and L is the characteristic width of the initial perturbation. The 
time during which these terms can materially affect v1 may be estimated as 2’ = 6-z I, / 

co. Owing to this it is possible to neglect the terms related to the appearance ofwaves 

running at velocities lzj, and Eq. (1.14) remains unchanged. All this is..however, valid 
only in problems with localized initial perturbation. In problems with periodic initial 

conditions, condition (1.11) is essential, 

!2. Darlvrtlon of KdVB equrtlont in the cake of rbrence of ri- 
8bllVeCtOrD. Let us consider the case when the number of linearly independent eigen- 
vectors of matrix -4 is smaller than n. For any matrix A there exists a matrix C such 

that B = C-lA C is a Jordan matrix. Let B have _?! < h cells. We denote the di- 
mension of the p cell by Nn. Owing to the imposed above condition of singleness of 
&, we have N, = 1. Moreover, asP+i= . . . -=?+++N~ = A,“, where SP = Ni -t 

. . . + NP-I and S, = 0. Columns of matrix C are denoted by Cj as in Sect. 1. 
Note that now not all Cj are eigenvectors of matrix A. 

The complete 
(I’ (t) cxp (ikz) 

system of linearly-independent solutions of Eq, (2.2) of the form 

now becomes 

usp+j == $] ‘(i.“‘ll 
r 1 CS~+~~BP iik(s -hp*t)j 

I< j<iV,, p=l,...,M 

It will be seen that the oscillation modes to which correspond Jordan cells greater 
than unity are unstable owing to the appearance of secular terms. Because of this, all 
subsequent reasoning is valid only for fairly short time intervals during which instability 
had not yet developed. Note that the allowance for attenuation and dispersion in the 
analysis of the above mode may result in the disappearance of terms proportional to 
powers of t and, thus, eliminate the mode instability. 
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Proceeding as in Sect, 1 we find that the only difference is in that for the determina- 
tion of VI for j > 1 we have to consider the system of equations 

aus +1 %l t1 a"sp+2 

-$- +v+ + 7 = &%ptl 

. . . . ..*............... 

%Tp+Np-1 aVS,tNp-l 
at + ‘p* a~ 

avSptNp _ f- ax - gSptNp-1 

avs tn. avS tNp _ 
PPlh* P 

---z--T p ax - gSp+Np 

instead of Eq. (1.8). 
We conclude, as in Sect. 1, that in the considered approximation it is possible to as- 

sume that gsP+j = 8aPsjd2v,/&$. Application of the Fourier transformation yields 

k2v;k 
Np-j 

vsptikO = - (kc0 - w) (khp* -co) 2 l=. ~sptjtl (co -“h *k)' - 
Np--i 

vLp+jtlk (O_kp*k)l~ izi~"'~'p 

with the specified accuracy. 

Applying the inverse transformation, we obtain 
Np-j 

vS,tj = - 
2 %+j+~ c!&Y @ _ cot) + 

ix0 (co - lbp*pl ax 
Np--j 

xL I=0 

(- 1)’ cyE+c* $g(z - hp*t) + 

a'9 tjtl 
-2--(P-- hp*t) 
82' I 

(2.1) 

It will be readily seen that in the general case it is not possible to impose on initial 

conditions constraints which would reduce to zero the expression in brackets in the last 
equation (this could have been done, if the expression (- 1)’ G+,+j+l were independent 

of I when 1 = 0, . . ., N, - j; j = 1, . . ., N,; p = 1, . . ., kf). However 
in a problem with localized perturbation propagation and fairly short times t, i.e. such 
for which the amplitudes of unstable modes remain small, it is possible to neglect the 
second sum in (2.1). Then, as in Sect. 1, VSt,+j satisfies Eq. (1.12). and the reasoning 

in Sect.1 remains completely valid, except that instead of (1.15) we obtain 

‘%f NP “p-j 6 

5 - Pzi z1 ;a tcO _y)L = - p 
j P 

The system of equations of the form (1.1) with matrix A with multiple roots arises, 
for example, in the investigation of nonlinear waves propagating at an angle to the mag- 
netic field in a cold plasma (see Cl]). This is precisely the case in the considered prob- 

lem, where zero is a double root. 
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9. The KdV equation for wuves propagating aeros a magnetic 
ffstd in a hot colllrfonlrtr plrrmo, In the one-dimensional case the beha- 
vior of weakly-nonlinear waves in a magnetized collisionless plasma moving across a 
magnetic field whose directions remain constant, with the characteristic length of per- 
turbations considerably greater than the larmor radius, and the kinetic pressure of plasma 
greater than, or of the order of magnetic pressure, is defined by the following equations 

where c,is the propagation velocity of small perturbation in the absence of dispersion ; 
fd and A are, respectively, the Larmor frequency and ion radius ; rn~ is the mass of the 
ion; PO, P_LO and B. are parameters of the unperturbed plasma, It will be seen that 
system (3.1) is of the form (1.1). The matrix of the system has three different eigenva- 
lues: c,, -C, and 0. Matrix C can be taken in the form 

cm cm 0 

c=o 0 cm 

PO ---PO 0 

For g, we obtain (notation as in Sect. 1) 

3 %_.L g1 = - 3 WJl ax ! 
QR2 Pvs -- 
2 8x2 

In the considered approximation dv, / dt = - QR”8”ui / &ca. From this, using for- 
mulas (1.15), we obtain fi = - SZ2P / 2c,. In this way we obtain for u, the follow- 

(3.2) 

Since U -; C, (Or _t VZ), where Vs is a quantity of higher order than ur , and in 
accordance with (1.12) in the considered approximation 

from (3.2) we obtain a similar equation for U. 

4. Thr, KdVB equrtfon for WOVOB in plasma with H&l1 dirpsrrion 
and Jouls dfssf prtfon. The system of equations which defines plasma with the 
Hall dispersion appears in p]. It is shown in [443 that in spite of the presence of Joule 
dissipation the equation of entropy variation can in the considered approximation, be 
replaced by the condition p =: pY.comt. To allow for the Joule dissipation it is, thus, 
necessary to alter in the system of equations only the equation of induction, as is made 
in 145 (see Eq, (1)). Consequently the system of equations defining plasma with Hall 
dispersion .and joule dissipation, after linearization of dispersion and dissipation terms 
and rejection of terms of order higher than a2 is of the form 
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l3V Bo cos a q, --~-_L=_ u @ 
Bocosa as, 

at 4axnpo az ----Gg-P az ax 

aw Bocos 3 ab, _ u aw Bocos a if&, 
---G&r--z-- at ---&iyiPaz ax 

(4. I) 

where pO is the unperturbed density ; p is the perturbation density ; U, Y and W are 
the X-, y- and Z-components of the velocity vector ; p. is the unperturbed pressure ; 
B, is the induction of the unperturbed magnetic field (owing to the solenoidal proper- 
ties of the magnetic field and induction, b, SE 0); a is the angle between the vector 
of unperturbed magnetic field and the s-axis (in a system of coordinates in which that 
vecror lies in xz -plane) ; and u is the permeance. We assume that tg DL N 1. 

It wit1 be readily seen that system (4.1) is of the form (1.1). The system matrix has 
six different eigenvalues 

h 1,2,3,4 = - +a+,_= &l/2 (v/a,'+ VA2 + 2a,j~Acos~+ - 
?ha -t VA2 - Z~~~AG~S~) 

3'5,fr = fi VACOS@, PA= BZ,f4np, 

Matrix C may be taken in the form 

c=== 

a, - a, a_ - a_. 0 0 

0 0 0 0 v, MB a - VA COS 

--L&D+-D-D, 0 0 

PO PO PO 
0 0 F 0 

0 0 

& & 

Q, 0, Q_ Q- 0 0 

The KdVB eq~tion can be derived for a fast magneto-sonic wave (C,, = a,), as well 
as for a slow one (co = a_). In the first case we assume that at the initial instant 
vi - a, ui = o (e)(i = 2, 3, 4, 5, e), and in the second v3 N E, Vi = 0 (c)(i = 

1, 2, 4, 5, 6) (all notation as in Sect. l), 
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For g,,, we obtain the following formula : 

where the plus and minus subscripts at rl and Y,* relate to the fast and slow wave, 
respectively, and 

W-@&-2 
2_a_2 7+ 

J a02 - izg 1 (u: - UP)2 - 
a+ 2rn0~(a+~-- aw2) VA2 sin*cr 

I 

where the upper and lower subscripts relate to the fast and slow wave, respectively. 
Using formula (1.15) and noting that 

where p = 1 for the fast wave, and p = 3 for the slow one, we obtain 

Using again (1.15) and noting that b, is a linear combination of ui, for 6, we finally 
obtain 

%i_ a*a$+ 
v,z sin c1 

% - a$ 
A&$+@ka~=~;rtd~ (4.2) 

It should be noted that passing to new variables by formula (2.5) can be useful in the 
derivation of approximate equations for nonlinear waves also in the case, when the dis- 
persion law differd from (2.3). 

In concluding the author thanks V. B. Baranov for the formnlation of the problem and 
valuable remarks. 
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